Designing Infrastructure High Availability

IT people, for some reason, seem to have an affinity towards designing solutions that use “cool” features, even when those features aren’t really necessary. This tendency sometimes leads to good solutions, but a lot of times it ends up creating solutions that fall short of requirements or leave IT infrastructure with significant short-comings in any number of areas. Other times, “cool” features result in over-designed, unnecessarily expensive infrastructure designs.

The “cool” factor is probably most obvious in the realm of High Availability design. And yes, I do realize that with the cloud becoming more common and prevalent in IT there is less need to understand the key architectural decisions needed when designing HA, but there are still plenty of companies that refuse to use the cloud, and for good reason. Cloud solutions are not meant to be one size fits all solutions. They are one size fits most solutions.

High Availability (Also called “HA”) is a complex subject with a lot of variables involved. The complexity is due to the fact that there are multiple levels of HA that can be implemented, from light touch failover to globally replicated, multi-redundant, always on solutions.

High Availability Defined

HA is, put simply, any solution that allows an IT resource (Files, applications, etc) to be accessible at all times, regardless of hardware failure. In an HA designed infrastructure, your files are always available even if the server that normally stores those files breaks for any reason.

HA has also become much more common and inexpensive in recent years, so more people are demanding it. A decade ago, any level of HA involved costs that exponentially exceeded a normal, single server solution. Today, HA is possible for as little as half the cost of a single server (Though, more often, the cost is essentially double the single server cost).

Because of the cost reduction, many companies have started demanding it, and because of the cool factor, a lot of those companies have been spending way too much. Part of why this happens is due to the history of HA in IT.

HA History Lesson

Prior to the development of Virtualization (the technology that allows multiple “Virtual” servers to run on a single physical server), HA was prohibitively expensive and required massive storage arrays, large numbers of servers, and a whole lot of configuration. Then, VMWare implemented a solution called “VMotion” that allowed a Virtual Server to be moved between server hardware immediately at the touch of a button (Called VM High Availability). This signaled a kind of renaissance in High Availability because it allowed servers to survive a hardware failure for a fraction of the cost normally associated with HA. There is a lot more involved in this shift that just VMotion (SANs, cheaper high-speed internet, and similar advancements played a big part), but the shift began about the time VMotion was introduced.

Once companies started realizing they could have servers that were always running, regardless of hardware failures, an unexpected market for high-availability solutions popped up, and software developers started developing better techniques for HA in their products. Why would they care? Because there are a lot of situations where a server solution can stop working properly that aren’t related to hardware failures, and VMotion was only capable of handling HA in the event of hardware failures.

VM HA vs Software HA

The most common mistake I see people making in their HA designs is accepting the assumption that VM-level High Availability is enough. It is most definitely not. Take Exchange server as an example. There are a number of problems that can occur in Exchange that will prevent users from accessing their email. Log drives fill up, forcing database dismount. IIS can fail to function, preventing users from accessing their mailbox. Databases can become corrupted, resulting in a complete shutdown of Exchange until the database can be repaired or restored from backup. VM HA does nothing to help when these situations come up.

This is where the Exchange Database Availability Group (DAG) comes in to play. A DAG involves constantly replication changes to Mailbox Databases to additional Exchange servers (as many of them as you want, but 2-3 is most common). With a DAG in place, any issue that would cause a database to dismount in a single Exchange server will instead result in a Failover, where the database dismounts on one server and mounts on the other server immediately (within a few seconds or less).

The DAG solution alone, however, doesn’t provide full HA for Exchange, because IIS failures will still cause problems, and if there is a hardware failure, you have to change DNS records to point them to the correct server. This is why a Load Balancer is a necessary part of true HA solutions.

Load Balancing

A Load Balancer is a network device that allows users to access two servers with a single IP address. Instead of having to choose which server you talk to, you just talk to the load balancer and it decides which server to direct you to automatically. The server that is chosen depends on a number of factors. Among those is, of course, how many people are already on each server, since the primary purpose of a load balancer is to balance the load between servers more or less equally.

More importantly, though, most load balancers are capable of performing health checks to make sure the servers are responding properly. If a server fails a health check for any reason (for instance, if one server’s not responding to HTTP requests), the load balancer will stop letting users talk to that server, effectively ensuring that whatever failure occurs on the first server doesn’t result in users being unable to access their data.

Costs vs. Benefits

Adding a load balancer to the mix, of course, increases the cost of a solution, but that cost is generally justified by the benefit such a solution provides. Unfortunately, many IT solutions fail to take this fact into account.

If an HA solution requires any kind of manual intervention to fix, the time required for notifying IT staff and getting the switch completed varies heavily, and can be anywhere from 5 minutes to several hours. From an availability perspective, even this small amount of time can have a huge impact, depending on how much money is assumed as “lost” because of a failure. Here comes some math (And not just the Trigonometry involved in this slight tangent).

Math!

The easiest way to determine whether a specific HA solution is worth implementing involves a few simple calculations. First, though, we have to make a couple assumptions, none of which are going to be completely accurate, but are meant to help determine whether an investment like HA is worth making (Managers and CEOs take note)

  1. A critical system that experiences downtime results in the company being completely unable to make money for the period of time that system is down.
  2. The amount of money lost during downtime is equal to whatever percentage of a year the system is down times the amount of annual revenue the organization expects to make in a year.

For instance, if a company’s revenue is $1,000,000 annually, they will make an average of $2 per minute (Rounded up from $1.90), so you can assume that 5 minutes of downtime costs that company about $10 in gross revenue. The cheapest of Load balancers cost about $2,000 and will last about 5 years, so you recoup the cost of the load balancer by saving yourself 200 minutes of downtime. That’s actually less than the amount of time most organizations spend updating a single server. With Software HA in place, updates don’t cause downtime if done properly, so the cost of a load balancer is covered in just being able to keep Exchange running during updates (This isn’t possible with just VM HA). But, of course, that doesn’t cover the cost of the second server (Exchange runs well on a low-end server, so $5000 for server and licenses is about what it would cost). Now imagine if the company makes $10,000,000 in revenue, or think about a company that has revenue of several billion dollars a year. HA becomes a necessity according to these calculations very quickly.

VM HA vs Software HA Cost/Benefit

Realistically, the cost difference between VM HA and Software HA is extremely low for most applications. Everything MS sells has HA capability baked in that can be done for very low costs, now that the Clustering features are included in Windows 2012 Standard. So the costs associated with implementing Software HA vs VM HA are almost always justifiable. Thus, VM HA is rarely the correct solution. And mixing the two is not a good idea. Why? Because it requires twice the storage and network traffic to accomplish, and provides absolutely no additional benefit, other than the fact that VM Replication is kinda cool. Software HA requires 2 copies of the Server to function, and each copy should use a separate server (Separate servers are required for VM HA as well, so only the OS licensing  is an increased cost) to protect against hardware failure of one VM host server.

Know When to Use VM HA

Please note, though, that I am not saying you should never use VM HA. I am saying you shouldn’t use VM HA if software HA is available. You just need to know when to use it and when not to. If software HA isn’t possible (There are plenty of solutions out there with no High Availability capabilities), VM HA is necessary and provides the highest level of high availability for those products. Otherwise, use the software’s own HA capabilities, and you’ll save yourself from lots of headaches.

Advertisements